Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0064323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37272841

RESUMO

Cutaneous human papillomavirus type 5 (HPV5) belongs to the supposedly oncogenic ß-HPVs associated with specific types of skin and oral cavity cancers. Three viral proteins, namely, helicase E1 and transcription factors E2 and E8^E2, are master regulators of the viral life cycle. HPV5 E2 is a transcriptional activator that also participates in the E1-dependent replication and nuclear retention of the viral genome, whereas E8^E2 counterbalances the activity of E2 and inhibits HPV transcription and replication. In the present study, we demonstrate that the HPV5 E2 protein is extensively phosphorylated by cellular protein kinases, and serine residue 402 (S402) is the highest scoring phosphoacceptor site. This residue is located within a motif conserved among many ß-HPVs and in the oncogenic HPV31 α-type. Using the nonphosphorylatable and phosphomimetic mutants, we demonstrate that phosphorylation of the E2 S402 residue is required for the transcription and replication of the HPV5 genome in U2OS cells and human primary keratinocytes. Mechanistically, the E2-S402-phopshodeficient protein is unable to trigger viral gene transcription and has an impaired ability to support E1-dependent replication, but the respective E8^E2-S213 mutant displays no phenotype. However, phosphorylation of the E2 S402 residue has no impact on the E2 stability, subcellular localization, self-assembly, DNA-binding capacity, and affinity to the E1 and BRD4 proteins. Further studies are needed to identify the protein kinase(s) responsible for this phosphorylation. IMPORTANCE Human papillomavirus type 5 (HPV5) may play a role in the development of specific types of cutaneous and head and neck cancers. The persistence of the HPV genome in host cells depends on the activity of its proteins, namely, a helicase E1 and transcription/replication factor E2. The latter also facilitates the attachment of episomal viral genomes to host cell chromosomes. In the present study, we show that the HPV5 E2 protein is extensively phosphorylated by host cell protein kinases, and we identify serine residue 402 as the highest scoring phosphoacceptor site of E2. We demonstrate that the replication of the HPV5 genome may be blocked by a single point mutation that prevents phosphorylation of this serine residue and switches off the transcriptional activity of the E2 protein. The present study contributes to a better understanding of ß-HPV5 replication and its regulation by host cell protein kinases.


Assuntos
Papillomavirus Humano , Proteínas Oncogênicas Virais , Fatores de Transcrição , Replicação Viral , Humanos , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Fatores de Transcrição/metabolismo , Replicação Viral/genética , Papillomavirus Humano/genética , Papillomavirus Humano/fisiologia
2.
J Virol ; 95(13): e0025121, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853963

RESUMO

Several types of widespread human papillomaviruses (HPVs) may induce the transformation of infected cells, provoking the development of neoplasms. Two main genera of HPVs are classified as mucosatropic alphapapillomaviruses and cutaneotropic betapapillomaviruses (α- and ß-HPVs, respectively), and they both include high-risk cancer-associated species. The absence of antiviral drugs has driven investigations into the details of the molecular mechanisms of the HPV life cycle. HPV replication depends on the viral helicase E1 and the transcription factor E2. Their biological activities are controlled by numerous cellular proteins, including protein kinases. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of α-HPV11, α-HPV18, and ß-HPV5. PKA stimulates the replication of both α-HPVs studied but has a more profound effect on the replication of high-risk α-HPV18. However, the replication of ß-HPV5 is inhibited by activated PKA in human primary keratinocytes and U2OS cells. We show that the activation of PKA signaling by different pharmacological agents induces the rapid proteasomal degradation of the HPV5 E2 protein, which in turn leads to the downregulation of E2-dependent transcription. In contrast, PKA-stimulated induction of HPV18 replication is the result of the downregulation of the E8^E2 transcript encoding a potent viral transcriptional inhibitor together with the rapid upregulation of E1 and E2 protein levels. IMPORTANCE Several types of human papillomaviruses (HPVs) are causative agents of various types of epithelial cancers. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of various types of HPVs during the initial amplification and maintenance phases of the viral life cycle. The replication of the skin cancer-related pathogen HPV5 is suppressed, whereas the replication of the cervical cancer-associated pathogen HPV18 is activated, in response to elevated PKA activity. To inhibit HPV5 replication, PKA targets the viral transcriptional activator E2, inducing its rapid proteasomal degradation. PKA-dependent stimulation of HPV18 replication relies on the downregulation of another E2 gene product, E8^E2, which encodes a potent transcriptional repressor. Our findings highlight, for the first time, protein kinase-related mechanistic differences in the regulation of the replication of mucosal and cutaneous HPV types.


Assuntos
Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Papillomavirus Humano 18/crescimento & desenvolvimento , Proteínas Oncogênicas Virais/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , DNA Helicases/metabolismo , Genoma Viral/genética , Papillomavirus Humano 18/classificação , Humanos , Infecções por Papillomavirus/patologia , Fatores de Transcrição/metabolismo
3.
PLoS Pathog ; 15(5): e1007788, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31091289

RESUMO

Inhibition of human papillomavirus (HPV) replication is a promising therapeutic approach for intervening with HPV-related pathologies. Primary targets for interference are two viral proteins, E1 and E2, which are required for HPV replication. Both E1 and E2 are phosphoproteins; thus, the protein kinases that phosphorylate them might represent secondary targets to achieve inhibition of HPV replication. In the present study, we show that CX4945, an ATP-competitive small molecule inhibitor of casein kinase 2 (CK2) catalytic activity, suppresses replication of different HPV types, including novel HPV5NLuc, HPV11NLuc and HPV18NLuc marker genomes, but enhances the replication of HPV16 and HPV31. We further corroborate our findings using short interfering RNA (siRNA)-mediated knockdown of CK2 α and α' subunits in U2OS and CIN612 cells; we show that while both subunits are expressed in these cell lines, CK2α is required for HPV replication, but CK2α' is not. Furthermore, we demonstrate that CK2α acts in a kinase activity-dependent manner and regulates the stability and nuclear retention of endogenous E1 proteins of HPV11 and HPV18. This unique feature of CK2α makes it an attractive target for developing antiviral agents.


Assuntos
Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Fosfoproteínas/metabolismo , Proteínas Virais/metabolismo , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/virologia , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Fosfoproteínas/genética , Fosforilação , Células Tumorais Cultivadas , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...